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Introduction (1)
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Porous medium equation (PME)

Example: Diffusion coefficient depending on 
the power of u

Percolation in porous medium, 
intensive thermal wave, …

Slow diffusion (anomalous diffusion): 
Finite propagation speed
m=1 (normal diffusion): Infinite propagation speed 



Solution of the PME for 1D case
 (initial function with bounded support)
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m =1.5

propagation speed is finite



Introduction (2)

Nonlinear Fokker-Planck equation (NFPE)

Corresponding physical phenomena Slow 
diffusion + drift force (by quadratic potential)

equilibrium density exists
Nonlinear transformation between the PME 
and the NFPE
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Previous work

[Aronson], [Vazquez], [Toscani] and many 
others…

Existence, uniqueness & mass conservation
W.l.o.g. we consider probability densities

Special solution: self-similar solution
Convergence rate to the self-similar solution
Lyapunov functional (free energy) technique
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Introduction (3)

The purpose of the presentation:
Behavioral analysis of the PME type diffusion 
eq. focusing on a stable invariant manifold

the family of q-Gaussian densities

A new point of view
Technique and concepts from Information 
Geometry can be applied



Outline
1.Generalized entropy and exponential family
2.Information geometry on the q-Gaussian 
family and analytical tools
3.Behavioral analysis of the PME and NFPE

Invariant manifold
The second moments, m-projection, geodesic
Peculiar phenomena to slow diffusion
Convergence rate to the q-Gaussian family
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1.
 

Generalized entropy and 
exp family  (1) [Naudts

 
02 & 04], [Eguchi04] 

:strictly increasing and positive on 
generalized logarithmic function

generalized exponential function
: the inverse of 

convex function 

- Strictly inc.
- Concave
-

to define entropy
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Generalized entropy and 
exp family (2)

Bregman divergence

Generalized entropy

Generalized exponential model

: canonical paramtr.,          : normalizing const
: vector of stochastic variables (Hamiltonian)



Remark [Naudts 02, 04]

Requirements to the generalized entropy:
1. For a certain    , the entropy should be of 
the form:

2.          -Gaussian is an ME equilibrium for 
Then            in the previous slide is determined.  

is called the deduced log func of   



Another representation of 

Conjugate function of

U-divergence [Eguchi 04] 
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Example (1): used later 

Generalized log q-logarithm q: real 

Generalized exp q-exponential

PME
Generalized entropy

(2-q)-Tsallis entropy



Example (2): used later

Bregman divergence

Gen. exp family q-Gaussian family

When q goes to 1, all of them recover to the 
standard ones. 13

q-Gaussian 
density
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2. Information geometry [Amari,Nagaoka00] 

on q-Gaussian family

:finite dimensional manifold in 
Potential function on

:Legendre transform of 
Legendre structure on       compatible with 
statistical physics

Riemannian metric, covariant derivatives, 
geodesics and so on.
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Important tools from IG (1)

1. dual coordinates (Expectation parameters)

Expectation of each         
(= the 1st and 2nd moments for q-Gaussian)

2. m-geodesic
a curve on      represented as a straight line 
in the    -coordinates



Important tools from IG (2)

3. m-projection of 
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(-1)

m-projection
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Useful properties of the m-projection

Rem: The property i) claims that the 1st and 
2nd moments are conserved.



3. Behavioral analysis of PME and NFPE

PME:

NFPE:

Relation between u and p [Vazquez 03]



Key preliminary result

Assumption: 1<m=2-q<2
Proposition

The q-Gaussian family      is a stable invariant 
manifold of the PME and NFPE. 

Idea of the proof)
Show the R.H.S. of the PME           is tangent 
to       when     is on      . 

19



Trajectories of m-projections (PME)

The 1st and 2nd moments of u(t)

where

Thm
The m-projection of the solution to the PME 

evolves following an m-geodesic curve, i.e., 
its expectation coordinate is a straight line.
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Properties of the m-projection and 
behavioral analysis

m-geodesic



Idea of the proof

Time derivatives of the moments:

straight line in the    -coordinates

22



Implication of the theorem (1)

The theorem implies the existence of 
nontrivial N-1 constants of motions.  N=dim     

A solution of the PME on the invariant 
manifold      is possibly solvable by 
quadratures. 23



Implication of the theorem (2)

Corollary: Let               and                         be 
solutions of the PME. 

If                                      at             , then
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Implication of the theorem (3)

Idea of the proof
The formula of the 2nd moments + the property 
i) of the m-projection

The corollary shows that the evolutional 
speed of each solution depends on the 
Bregman divergence from      .
(=the difference of the entropies)
When m=1 (normal diffusion), such a  
phenomenon does not occur. 
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Difference of the second moments



Difference of the evolutional speed



Convergence analysis for the NFPE 
and its application to the PME

Generalized free energy

It works as a Lyapunov functional for the NFPE:

The equilibrium density is a q-Gaussian:
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Convergence analysis for the NFPE 
and its application to the PME

Difference of the free energy from the 
equilibrium density: 

Thus,                             is monotone 
decreasing.

Interpreted as a generalized H-theorem
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Convergence analysis for the NFPE 
and its application to the PME

1. The property ii) of the m-projection:
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Convergence analysis for the NFPE 
and its application to the PME

2. The known convergence result [Toscani05]

3. The property of the transformation between 
the PME and the NFPE 

If     is transform of    , then  
is an m-projection of u

is an m-projection of p
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Convergence analysis for the NFPE 
and its application to the PME

Using 1, 2 and 3, we have the following:

Convergence rate to the q-Gaussian family
L1-norm convergence rate is derived from 
this result via the Csiszar-Kullback inequality.
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Convergence analysis for the NFPE 
and its application to the PME
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Convergence analysis for the NFPE 
and its application to the PME



Remark: L1-norm convergence rate

Csiszar-Kullback inequality [Carrillo & Toscani 00]

The proposition implies that 
L1 convergence rate to        is

faster than  
L1 convergence rate to the self-similar solution
[Toscani 05]



Self-similar solution

Proposition
Self-similar solution is an m- and e-geodesic



Conclusions

Behavioral analysis of the solutions to the 
PME and NFPE focusing on the q-Gaussian 
family.

Constants of motions, evolutional speeds, 
convergence rate to      .
Generalized concepts of statistical physics

Future work 
Relation with Otto’s result
The other parameter range: m<1 (fast 
diffusion), 2<m, or the other type of diffusion 
equation 37
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