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1. Introduction

: the set of positive definite               
real symmetric matrices

related to
matrix (in)eq. (Lyapunov,Riccati,…)
mathematical programming (SDP)
statistics (Gaussian, Covariance matrix)

…
symmetric cones (hom. sp., Jordan alg.)
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Information geometry on

Dualistic geometric structure

: arbitrary vector fields on 

:Riemannian metric

,       :a pair of dual affine connections
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A simple way to introduce a 
dualistic structure (1)

: open domain in
:strongly convex on       (i.e., positive 

definite Hessian mtx.) Cf. Hessian geometry
Riemannian metric

Dual affine connections
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A simple way to introduce a 
dualistic structure (2)

divergence

projection
MLE, MaxEnt and so on

Pythagorean relations
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2. Standard IG on

: the set of positive definite 
real symmetric matrices

●

 

logarithmic characteristic func. on

- The standard case -

R);(,detlog)( nPDPPP ∈−=ϕ
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-log det P appears as

Semidefinite Programming (SDP)
self-concordant barrier function

Multivariate Analysis (Gaussian dist.)
log-likelihood function

(structured covariance matrix estimation)
Symmetric cone: log characteristic function
Information geometry on

potential function
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Standard dualistic geometric structure 
on                     (1) [AO,Suda,Amari LAA96]

the set of n by n real symmetric matrix

:arbitrary set of basis matrices
(primal) affine coordinate system

Identification    



Standard dualistic geometric structure 

on                   (2)

: Riemannian metric (Fisher for Gaussian)

,      :dual affine connections

Jordan product (mutation)

plays a role of potential function)(Pϕ
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Properties           symmetric cones

-invariant 
:involution

dual affine coordinate system (Legendre tfm.)

divergence

self-dual
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Invariance of the structure

Automorphism group, i.e., congruent 
transformation:
the differential:

Ex) Riemannian metric

T
G

T
G

GXGX

nGLGGPGP

=

∈=

*)(

),,(,

τ

τ R
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Doubly autoparallel submanifold

Def. Submanifold is 
doubly autoparallel when it is both      -
and          -autoparallel,

equivalently,

is both linearly and inverse- 
linearly constrained.
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Linearly constrained -autoparallel
Inverse-linearly          -autoparallel
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Set                                .
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Doubly autoparallelism (special case)

Jordan product for Sym(n)
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Doubly autoparallelism - Examples – (1)
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Doubly autoparallelism - Examples - (2)

18



Applications of DA 
Nearness, matrix approximation, 

GL(n)-invariance, convex optimization
Semidefinite Programming

If a feasible region is DA, an explicit formula for 
the optimal solution exists.

Maximum likelihood estimation of structured 
covariance matrix

GGM, Factor analysis, signal processing (AR 
model)
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MLE of str. cov. matrix (1)

n samples of random variable z
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MLE of str. cov. matrix (2)

If    is also inverse-linearly constrained, 
i.e.,    is DA, then MLE is a convex 
optimization problem with a solution formula: 
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MLE of str. cov. matrix (3)
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MLE of str. cov. matrix (4)
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MLE of str. cov. matrix (5)

E-step: Explicit formula for simple imbedding 
(e.g., upper-left corner etc)

M-step: reduces to solving a linear equation if  
the structure of C is DA.
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3. Extension via the other 
potentials (Bregman divergence)

The other convex potentials
V-potential functions

Study their different and common geometric 
natures
Application to multivariate statistics?
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Contents

Ｖ-potential function
Dualistic geometry on 
Foliated Structure 
Decomposition of divergence 
Application to statistics

geometry of a family of multivariate
elliptic distributions
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Def.   V-potential function

-The standard case:

PPssV detlog)(log)( −=⇒−= ϕ

, RR →+:)(sV

Characteristic function on

(strongly convex)
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Def.

Rem.    The standard case: 
2,0)(,1)(1 ≥=−= kss kνν

Prop. (Strong convexity condition)

The Hessian matrix of the V-potential is positive 
definite on                      if and only if
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Prop.
When two conditions in Prop.1 hold, 
Riemannian metric derived from the V- 
potential is

=
Here,
X,Y : vector field ~ symmetric matrix-valued func.

Rem.  The standard case:
=
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Prop. (affine connections)

Let     be the canonical flat connection on                 . 
Then the V-potential defines the following dual 
connection           with respect to        : 

∇
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Rem. the standard case:

“mutation” of the Jordan product of Ei and Ej
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divergence function

Divergence function derived from  

- a variant of relative entropy,
- Pythagorean type decomposition
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Prop.

The largest group that preserves the dualistic 
structure                          invariant is

except in the standard case.

),( RnSLGG ∈τ

),( RnGLGG ∈τRem.  the standard case:

Rem.  The power potential of the form:

has a special property.
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Special properties for the 
power potentials

The affine connections derived from the 
power potentials are GL(n)-invariant.
Both     - and         -projection are GL(n) -
invariant. 
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Foliated Structures

The following foliated structure features the 
dualistic geometry                          derived by 
the V-potential.

35



Prop.
Each leaf      and       are orthogonal each 
other with respect to        .

Prop.
Every       is simultaneously a      - and          - 
geodesic for an arbitrary V-potential.
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aProp.
Each leaf      is a homogeneous space with the 
constant negative curvature
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Application to 
multivariate statistics

Non Gaussian distribution
(generalized exponential family)

Robust statistics
beta-divergence,
Machine learning, and so on

Nonextensive statistical physics
Power distribution, 
generalized (Tsallis) entropy, and so on
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Application to 
multivariate statistics

Geometry of U-model
Def. 
Given a convex function U and set u=U’,
U-model is a family of elliptic (probability)
distributions specified by P:

= ・・・
 

:normalizing const.
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Rem. When U=exp, the U-model is the 
family of Gaussian distributions. 

U-divergence: 

Natural closeness measure on the U-model

Rem. When U=exp, the U-divergence is the 
Kullback-Leibler divergence (relative entropy). 
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Prop.

Geometry of the U-model equipped with the  

U-divergence coincides with            

derived from the following V-potential function:
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Conclusions

Sec. 2
DA submanifold: needs a tractable characterization or 
the classification 

Sec. 3
Derived dualistic geometry is invariant under the             
-group actions
Each leaf is a homogeneous manifold with a negative 
constant curvature
Decomposition of the divergence function (skipped)
Relation with the U-model with the U-divergence
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