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1. Minkowski planes
- -

A Minkowski plane is the vector space R? endowed with a
Minkowski norm.
A Minkowski norm on R? is a nonnegative real valued

function F' : R* — [0, oo) with the properties
1. Fis C*® on R2 = R2\ {0},
2. 1-positive homogeneity : F'(\y) = A\ (y), VA > 0, y € R?,

2 112 _
10°F (y) is

3. strong convexity: the Hessian matrix g;;(y) = 35,73,

positive definite on R2.

The indicatrix S := {y € R?: F(y) = 1} is a closed, strictly
convex, smooth curve around the origin y = 0.

o -

—p.2/3



fLet (M, F') be a Minkowski plane. T

Cartan tensor
F(y) 9°F*(y)
4 Oytdyl Oyk’

The Minkowski norm F on R“ induces a Riemannian metric
g on the punctured plane R? by

2) § = gij(y)dy’ @ dy’.
The Cartan scalar (main scalar) / : ?? — R is defined by

dyi dyj dy’~C

(3) I(y) = Aijr(y) -
. dt dt dt o
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fT
(4) dV = \/gdy' A dy?,
where \/§ = \/det(gij).

The induced Riemannian volume form on the indicatrix
submanifold S is

(5) ds = \/9(y"5" — y*y")dt.

Along S the 1-form ds coincides with

he volume form of the Riemannian metric g:

g
(6) df = %(yld?f —yidy").

LThe parameter ¢ is called the Landsberg angle. J
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2. Riemannian Length of the Indicatrix

o .

L—/ds— 1dy — y2dyl).
Sl

Remark that

(7) v'i? — %0t = \Joi ()i,

l.e. measure the Riemannian arc length of the indicatrix,

regarded as a curve in R2, by the Riemannian metric g.

L is typically NOT equal to 27 as in the case of Riemannian
surfaces. This fact was remarked for the first time by M.
Matsumoto in 1986.

o -
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Example 1
o

®) F(y' %) = /(42 + (42)? + By!

onsider a Randers- Minkowski norm

on R?, where B € [0, 1) is a constant parameter.
Polar equation of the indicatrix

1
" 1+ Bcosp’

(9)
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. .

he indicatrix length is given by the elliptic integral

4 2 d
(10) L= / |
V1+BJo /11— k2sin?u
2B
where o =2u, and k = / ——.
P =K 1+ B
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Figure 1. The variation of Riemannian length of the indicatrix
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fC

onsider the Minkowski norm

(11) P@n:xﬂwﬁ+QﬂP+AJ@U*+@%ﬁ A=0

in R2. ;

With the substitution « := y_l one obtains the indicatrix
Y

length

1 2\3 2

, 1 (1 —|—U4)3/2 1 _|_u4d

(12) = 8/ U.
0 1+ u?2 +2\V1 + ul

o -
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3. Finsler surfaces

=

f A Finsler surface Is the pair (M, F') where F : TM — [0, c0)

is C> on TM := TM\{0} and whose restriction to each
tangent plane 7. M is a Minkowski norm.

For each » € M the quadratic form ds? := g;;(z, y)dy' @ dy’
gives a Riemannian metric on the punctured tangent space

T, M. Using the Finslerian fundamental function F' we
define the indicatrix bundle (Or unit sphere bundle)

SM :=UyzepSeM, where S, M :={y e T, M : F(x,y) = 1}.
Topologically, 1..M is diffeomorphic with the Euclidean unit
sphere S? in R?. Moreover, the above ds* induces a
Riemannian metric h, on each S, M.

o -
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fSince the Finslerian fundamental tensor g;;(x, y) is invariant
under the rescaling y — Ay, A > 0, the inner products in the
fibers T, M are actually identical. This redundacy is
removed by working with the pull-back bundle =*T'M over
SM.

Riemann—Finsler geometry is the geometry of the pullback
bundle (7*T'M,r,SM) endowed with an inner product in
each fiber.
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=

The Riemannian case. On a Riemannian manifold (M, g) the
metric

(13) g = gij(z)dr' @ da’

IS a specific inner product in each tangent space 17, M
viewed as a vector space. Moreover,

(14) g = gij(z)dy' @ dy’

IS an isotropic Riemannian metric on 7, M viewed as
differentiable manifold.

o -
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The Riemann-Finslerian case. On a Riemann-Finsler manifold
(M, F') the metric

(15) g = gij(z,y)dz’ ® da’

Is a family of inner products in each tangent space 7, M
viewed as a vector space, parametrized by rays ty, (¢t > 0)
which emanate from origin. This is actually a Riemannian
metric on 7#*T M. Moreover,

(16) § = gij(z,y)dy" @ dy’

IS a non-isotropic Riemannian metric on 7, M viewed as
differentiable manifold, which is invariant along each ray

Land possibly singular at origin. J

.—p.14/3



4. Moving frame methods

o Z. .

Using the global section [ := J a. of #*T'M, one can
F(y) 0z

construct a positively oriented g-orthonormal frame {eq, e}
for 7*T'M, called Berwald frame, where g = g;;(z, y)dz' @ dx’
is the induced Riemannian metric on the fibers of 7*T'M.

. 1(aF 0 OF a)_m1£+m2i
P g\ay2ost ayloa?) T ox! 02’
1 2
Yy 9 vy I 410 90
2= Foad T Foe Lo oz

.—p.15/3



5. Chern connection

=

fThere exists a torsion free, almost g-compatible connection
on the Riemannian manifold (7*T'M, g), called the the Chern
connection of a Finsler surface.

The Chern connection matrix

wll w12 —Jw3 —w?
(17) 1 2 | — 3
w9 w9 w 0

where I := A1 = A(ey, eq,e1) IS the Cartan scalar for Finsler
surfaces.

o -
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6. Structure equations

The structure equations of a Finsler surface

dol = —Twl' AW +W? AW
dw? = —w' AW’
dod = Kw' Aw? — Juwt Aw?.

The Bianchi identities

1 01 ol
e L)
J 2 ozl +y5:z:
K3 +KI+ Jy=0.
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7. Parallel translation

=

fLe’[ o : |a,b] — M be an arbitrary C'*° piecewise curve.
The (nonlinear) covariant derivative of 1/ along o is defined by

dW? 9,
dt 0z |o ()
where I, are the coefficients of Chern connection. The top

letter indicates the reference vector. If it is absent it means
that the reference vectoris 7.

W (t) is said to be (nonlinearly) parallel along o(¢) if D}Y W = 0.
The (nonlinear) parallel translation along o(¢) is given by the
map

Pg : To(a)M — Ta(b)Ma Pg(?}) — w,

where V (¢) is a nonlinearly parallel vector field along o with
Via) =v, V(b) = w.

o -
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=

Remark. For a C'°° piecewise curve ¢ on a Finsler manifold
(M, F), the parallel translation preserves the Finslerian
norm, i.e. if W (t) is parallel along o, then F'(o(t), W (t)) IS
constant.

The Finsler surface (M, F') is called a Berwald surface if the
parallel translation P : T,y M — T, ;)M is a linear
Isomorphism, where ¢ : [a,b] — M, o(a) =p € M,

o(b) =q € M, is a C* piecewise curve.

The Finsler surface (M, F') is called a Landsberg surface if

the parallel translation

(18) By (TpyM, gp) — (TyM, g4)

IS an isometry, where ¢, Is the induced Riemannian metric
Lin T.M, forany z € M.
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8. Landsberg surfaces

o .

A Landsberg surface is characterized by J = 0, or,
equivalently, Io = 0, K3 = —K1.
Bianchi equations imply

dIl = TLw' + I3w?
dK = Kiw'+ Kow® — KIw’.

From the general Cartan—Kahler theory of EDS it follows
that such structures depend on two functions of two
variables (Bryant, 1995).

A Finsler surface is Landsberg if and only if its indicatrix
bundle SM is a principal right SO(2)-bundle which

connection is induced by the Chern connection (Bryant,
1995).

o -
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.

heorem (Rigidity theorem for Berwald surfaces, Z. Szabo, 1981)
Let (M, F) be a connected Berwald surface for which the
Finsler structure F' is smooth and strongly convex on all

—~——

TM.

1. It K =0, then F is locally Minkowski everywhere.
2. If K #£0, then F'is Riemannian everywhere.

Theorem (D. Bao 2000) The indicatrix length of a Landsberg
surface is constant.
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9. Curves on a Finsler surface

fLe’[ v : |a,b] — M be a smooth curve on a Finsler surface T
(M, F), given by o* = (), T'(t) = 4(t), F(~(t),T(t)) = 1, for
anyt e |a,b].

Prop. For each fixed point z(¢), t € [a, b], on the curve ~,
there exists a Finslerian unit length vector field

N(t) - Tx(t)M such that

an@y(N(t),T(t)) = 0.
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W .

e define the tangent geodesic curvature vector over N by

. . O
T (. NYNITF)——
+ jk(’r7 ) )aZCZh/(t)’

KM(t) .= DYV N = (dg

the geodesic curvature over NV of the curve ~ by

DO | —

EV () = [gn (KM (1), KW (#))) 2,

and the signed geodesic curvature over N of ~ by

K (1) = —gn (K™ (0), 7(1)),
Lwhere T'(t) is considered now as a vector field in the fiber OfJ
7' T'M over (v(t), N(t)).
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Prop. If v IS a smooth curve on the Finsler surface (M, F),
then the following relations hold good

KO = =~ k070
k() = = V0

where ¢2(t) = gy (T, T), and KM (2), £V (¢) are the tangent
geodesic curvature vector, and geodesic curvature of -,
respectively.

o -
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10. Gauss-Bonnet Theorem

=

fFor an arbitrary vector field V : M — TM, x+— V(z) € T, M,
we denote its zeros by z, € M, (o =1,2,...,k), and by i,
the index of V at z,,.

By removing from M the interiors of the geodesic circles S¢
(centred at x, and of radius ¢), one obtains the manifold
with boundary M..

Remark that in this case, the boundary of M. consists of
the boundaries of the geodesic circles 5S¢ and the boundary
of M.

o -
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fAss:uming; that V' has all zeros in M \ 0M, it follows that V/ T

has no zeros on M., and therefore we can normalize it
obtainig the following mapping:

V Viz)
X=—:M M —>
F(V) e = oM, @

Using this X, we can lift M. to SM obtainig in this way the
2-dimensional submanifold X (M) of SM.

o -
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Prop. Let (M, F') be a compact oriented Landsberg surface
with the smooth boundary oM. Let

N :0M — SM

be the inward pointing Finslerian unit normal on oM.
Then, we have

/K\/§dx1/\dx2+/ wi®=L-X(M),
M N(OM)

where L is the Riemannian length of the indicatrix of (M, F'),

K and g are the Gauss curvature and the determinant of

the fundamental tensor g;; of F, respectively, w,* the Chern
Lconnection form, and X' (M) the Euler characteristic of M. J

. —p.27/3



=

Prop. On the Finsler manifold (M, F') with smooth boundary
OM =~ :|a,b] — M, we have

N
[ k()
N(OM) v o(t)

where N is the inward pointing normal on +, w,? the Chern
connection form and % = gy (T, 7).
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fTheorem (Gauss-Bonnet Theorem for Landsberg surfaces)
Let (M, F') be a compact, connected Landsberg surface
with unit velocity smooth boundary. Then

)

(
1 1 2 l/kN () . _
L/MK\/gdx Ada® + = dt = X(M),

where L is the Riemannian length of the indicatrix of (M, F),
k](VN) the signed curvature of v over N, the scalar
o =+/gn(T,T), and X (M) the Euler characteristic of M.

o -
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N—-extremal curves

=

fFor a natural parametrized smooth curve v : [0,1] — M on a
Landsberg surface (M, F') with velocity field T'(¢) we can
construct the normal vector field N = N(t) s.t.

gn(N,N) =1, gn(N,T) =0, gn(T,T) = °(1).

By derivation of those along ~ we obtain

gy (DN, N =0,

gn (DN, T) + gn (N, DT = 0,
(N) _ 1do*(t)

gn(Dy T, T) = S— =
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For a Riemannian surface the following are equivalent

(1) the geodesic curvature kyn(t) = g(D7T, N) vanishes

(2) the velocity vector field T is parallel transported along ~
(3)1

(4)

ne normal vector field N is parallel transported along ~
v 1S a geodesic.

For a Landsberg surface the following are equivalent

(1) the geodesic curvature k](VT) (t) vanishes
(2) the normal vector field N is parallel transported along ~,
.e. D(TN)N = 0.

These curves will be called N-extremals of the surface M.

o -
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fI

f v is an N-extremal, then we have

gn (N, DINT) =0,
(N) B ldUQ(t)
gN(DT T, T) = 9 1 .

It follows that the N-extremals are characterized by

DN = 0
DT = %[loga(t)]T.
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Let us construct the N-lift 4 of an N-extremal v to TM as

AN

above, i.e. y(t) = (y(t), N(t)). The local equations of 4 are

dz’

(19) — = T
dN" . .
(20) - = —T/(t)N"Tj(x, N),

where T'is given by gy (N, T) = 0.

For the initial conditions (z, N}) the above equations have
unique solution. Here, for (z}, N}) the initial velocity T}, is
given by g, (No, T) = 0.

o -
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fT

he N-extremals are the integral lines of the vector field T

A . )

T =T (t)@’(%m e T (T M)

that plays the role of the spray for N-extremals.

In the Riemannian case, the N-extremals coincide to the
Riemannian geodesics.

In the Finslerian case, the N-extremals do not coincide with

the Finslerian geodesics, nor with the geodesics of the
Riemannian metric gy.

o -
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Remark 1. For a Lansberg surface whose smooth boundary
OM = ~ is a N-extremal, the Gauss-Bonnet formula reads

1
—/ K\/gdx' N dz* = X (M),
L Jn

where L is the Riemanian length of the indicatrix and X' (M)
the Euler characteristic of M.
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Remark 2. Consider the case of the Minkowski plane (R?, F),

and a domain D C R? bounded by the natural parametrized
indicatrix curve S = ~. In this case, the Gauss-Bonnet

formula implies:
(V)

/ iy (t)dt: L
; ,

o(t)
(V)

where k,, ’ is the geodesic curvature of the indicatrix, and L
the Riemannian length of the indicatrix.

o -
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