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1. Minkowski planes

A Minkowski plane is the vector space R
2 endowed with a

Minkowski norm.
A Minkowski norm on R

2 is a nonnegative real valued
function F : R2 → [0,∞) with the properties

1. F is C∞ on R̃2 = R
2 \ {0},

2. 1-positive homogeneity : F (λy) = λF (y), ∀λ > 0, y ∈ R
2,

3. strong convexity: the Hessian matrix gij(y) = 1
2

∂2F 2(y)
∂yi∂yj is

positive definite on R̃2.

The indicatrix S := {y ∈ R
2 : F (y) = 1} is a closed, strictly

convex, smooth curve around the origin y = 0.
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Let (M,F ) be a Minkowski plane.
Cartan tensor

Aijk(y) :=
F (y)

4

∂3F 2(y)

∂yi∂yj∂yk
, i, j, k ∈ {1, 2}.(1)

The Minkowski norm F on R
2 induces a Riemannian metric

ĝ on the punctured plane R̃2 by

ĝ := gij(y)dyi ⊗ dyj .(2)

The Cartan scalar (main scalar) I : R̃2 → R is defined by

I(y) = Aijk(y)
dyi

dt

dyj

dt

dyk

dt
.(3)
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The volume form of the Riemannian metric ĝ:

dV =
√

gdy1 ∧ dy2,(4)

where √
g =

√
det(gij).

The induced Riemannian volume form on the indicatrix
submanifold S is

ds =
√

g(y1ẏ2 − y2ẏ1)dt.(5)

Along S the 1-form ds coincides with

dθ =

√
g

F 2
(y1dy2 − y2dy1).(6)

The parameter θ is called the Landsberg angle.
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2. Riemannian Length of the Indicatrix

L :=

∫

S
ds =

∫

S1

√
g

F 2
(y1dy2 − y2dy1).

Remark that
√

g

F 2
(y1ẏ2 − y2ẏ1) =

√
gij(y)ẏiẏj ,(7)

i.e. measure the Riemannian arc length of the indicatrix,
regarded as a curve in R̃2, by the Riemannian metric ĝ.
L is typically NOT equal to 2π as in the case of Riemannian
surfaces. This fact was remarked for the first time by M.
Matsumoto in 1986.
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Example 1

Consider a Randers- Minkowski norm

F (y1, y2) =
√

(y1)2 + (y2)2 + By1(8)

on R
2, where B ∈ [0, 1) is a constant parameter.

Polar equation of the indicatrix

r =
1

1 + B cosϕ
,(9)
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The indicatrix length is given by the elliptic integral

L =
4√

1 + B

∫ π

2

0

dµ√
1 − k2 sin2 µ

,(10)

where ϕ = 2µ, and k :=

√
2B

1 + B
.
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Figure 1. The variation of Riemannian length of the indicatrix
for the metric given in Example 1.
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Consider the Minkowski norm

F (y) =

√
(y1)2 + (y2)2 + λ

√
(y1)4 + (y2)4, λ ≥ 0(11)

in R
2.

With the substitution u :=
y2

y1
one obtains the indicatrix

length

L = 8

∫ 1

0

√
1 + λ

(1 + u2)3

(1 + u4)3/2
+ λ2 3u2

1 + u4

1 + u2 + λ
√

1 + u4
du.(12)
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lim
λ→∞

L =
√

3π.
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3. Finsler surfaces

A Finsler surface is the pair (M,F ) where F : TM → [0,∞)

is C
∞ on T̃M := TM\{0} and whose restriction to each

tangent plane TxM is a Minkowski norm.

For each x ∈ M the quadratic form ds2 := gij(x, y)dyi ⊗ dyj

gives a Riemannian metric on the punctured tangent space
T̃xM . Using the Finslerian fundamental function F we
define the indicatrix bundle (or unit sphere bundle)
SM := ∪x∈MSxM , where SxM := {y ∈ TxM : F (x, y) = 1}.
Topologically, IxM is diffeomorphic with the Euclidean unit
sphere S2 in R

3. Moreover, the above ds2 induces a
Riemannian metric hx on each SxM .
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Since the Finslerian fundamental tensor gij(x, y) is invariant
under the rescaling y 7→ λy, λ > 0, the inner products in the
fibers TxM are actually identical. This redundacy is
removed by working with the pull-back bundle π∗TM over
SM .

Riemann–Finsler geometry is the geometry of the pullback
bundle (π∗TM, π, SM) endowed with an inner product in
each fiber.
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The Riemannian case. On a Riemannian manifold (M, g) the
metric

g = gij(x)dxi ⊗ dxj(13)

is a specific inner product in each tangent space TxM

viewed as a vector space. Moreover,

ĝ = gij(x)dyi ⊗ dyj(14)

is an isotropic Riemannian metric on TxM viewed as
differentiable manifold.
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The Riemann-Finslerian case. On a Riemann-Finsler manifold
(M,F ) the metric

g = gij(x, y)dxi ⊗ dxj(15)

is a family of inner products in each tangent space TxM

viewed as a vector space, parametrized by rays ty, (t > 0)
which emanate from origin. This is actually a Riemannian
metric on π∗TM . Moreover,

ĝ = gij(x, y)dyi ⊗ dyj(16)

is a non-isotropic Riemannian metric on TxM viewed as
differentiable manifold, which is invariant along each ray
and possibly singular at origin.
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4. Moving frame methods

Using the global section l :=
yi

F (y)

∂

∂xi
of π∗TM , one can

construct a positively oriented g-orthonormal frame {e1, e2}
for π∗TM , called Berwald frame, where g = gij(x, y)dxi ⊗ dxj

is the induced Riemannian metric on the fibers of π∗TM .

e1 :=
1√
g

( ∂F

∂y2

∂

∂x1
− ∂F

∂y1

∂

∂x2

)
= m1 ∂

∂x1
+ m2 ∂

∂x2
,

e2 :=
y1

F

∂

∂x1
+

y2

F

∂

∂x2
= l1

∂

∂x1
+ l2

∂

∂x2
.
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5. Chern connection

There exists a torsion free, almost g-compatible connection
on the Riemannian manifold (π∗TM, g), called the the Chern
connection of a Finsler surface.

The Chern connection matrix
(

ω1
1 ω1

2

ω2
1 ω2

2

)
=

(
−Iω3 −ω3

ω3 0

)
(17)

where I := A111 = A(e1, e1, e1) is the Cartan scalar for Finsler
surfaces.
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6. Structure equations

The structure equations of a Finsler surface

dω1 = −Iω1 ∧ ω3 + ω2 ∧ ω3

dω2 = −ω1 ∧ ω3

dω3 = Kω1 ∧ ω2 − Jω1 ∧ ω3.

The Bianchi identities

J = I2 =
1

F

(
y1 δI

δx1
+ y2 δI

δx2

)

K3 +KI + J2 = 0.
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7. Parallel translation

Let σ : [a, b] → M be an arbitrary C∞ piecewise curve.
The (nonlinear) covariant derivative of W along σ is defined by

DW
T W :=

[dW i

dt
+ W jT kΓi

jk(σ(t),W (t))
] ∂

∂xi |σ(t)
,

where Γi
jk are the coefficients of Chern connection. The top

letter indicates the reference vector. If it is absent it means
that the reference vector is T .
W (t) is said to be (nonlinearly) parallel along σ(t) if DW

T W = 0.
The (nonlinear) parallel translation along σ(t) is given by the
map
Pσ : Tσ(a)M → Tσ(b)M, Pσ(v) = w,

where V (t) is a nonlinearly parallel vector field along σ with
V (a) = v, V (b) = w.
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Remark. For a C∞ piecewise curve σ on a Finsler manifold
(M,F ), the parallel translation preserves the Finslerian
norm, i.e. if W (t) is parallel along σ, then F (σ(t),W (t)) is
constant.

The Finsler surface (M,F ) is called a Berwald surface if the
parallel translation Pσ : Tσ(a)M → Tσ(b)M is a linear
isomorphism, where σ : [a, b] → M , σ(a) = p ∈ M ,
σ(b) = q ∈ M , is a C∞ piecewise curve.

The Finsler surface (M,F ) is called a Landsberg surface if
the parallel translation

Pσ : (T̃pM, gp) → (T̃qM, gq)(18)

is an isometry, where gx is the induced Riemannian metric
in TxM , for any x ∈ M .
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8. Landsberg surfaces

A Landsberg surface is characterized by J = 0, or,
equivalently, I2 = 0, K3 = −KI.

Bianchi equations imply

dI = I1ω
1 + I3ω

3

dK = K1ω
1 + K2ω

2 − KIω3.

From the general Cartan–Kahler theory of EDS it follows
that such structures depend on two functions of two
variables (Bryant, 1995).

A Finsler surface is Landsberg if and only if its indicatrix
bundle SM is a principal right SO(2)-bundle which
connection is induced by the Chern connection (Bryant,
1995).
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Theorem (Rigidity theorem for Berwald surfaces, Z. Szabo, 1981)
Let (M,F ) be a connected Berwald surface for which the
Finsler structure F is smooth and strongly convex on all
T̃M .

1. If K ≡ 0, then F is locally Minkowski everywhere.

2. If K 6≡ 0, then F is Riemannian everywhere.

Theorem (D. Bao 2000) The indicatrix length of a Landsberg
surface is constant.
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9. Curves on a Finsler surface

Let γ : [a, b] → M be a smooth curve on a Finsler surface
(M,F ), given by xi = xi(t), T (t) = γ̇(t), F (γ(t), T (t)) = 1, for
any t ∈ [a, b].

Prop. For each fixed point x(t), t ∈ [a, b], on the curve γ,
there exists a Finslerian unit length vector field
N(t) ∈ T̃x(t)M such that

gN(t)(N(t), T (t)) = 0.
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We define the tangent geodesic curvature vector over N by

K
(N)(t) := D

(N)
T N = (

dN i

dt
+ Γi

jk(x,N)N jT k)
∂

∂xi |γ(t)
,

the geodesic curvature over N of the curve γ by

k(N)(t) := [gN (K(N)(t),K(N)(t))]

1

2 ,

and the signed geodesic curvature over N of γ by

k
(N)
T (t) := −gN (K(N)(t), T (t)),

where T (t) is considered now as a vector field in the fiber of
π∗TM over (γ(t), N(t)).
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Prop. If γ is a smooth curve on the Finsler surface (M,F ),
then the following relations hold good

K
(N)(t) = − 1

σ2(t)
k

(N)
T (t)T (t),

k(N)(t) =
1

σ(t)
|k(N)

T (t)|,

where σ2(t) = gN (T, T ), and K
(N)(t), k(N)(t) are the tangent

geodesic curvature vector, and geodesic curvature of γ,
respectively.
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10. Gauss-Bonnet Theorem

For an arbitrary vector field V : M → TM , x 7→ V (x) ∈ TxM ,
we denote its zeros by xα ∈ M , (α = 1, 2, . . . , k), and by iα
the index of V at xα.

By removing from M the interiors of the geodesic circles Sε
α

(centred at xα and of radius ε), one obtains the manifold
with boundary Mε.

Remark that in this case, the boundary of Mε consists of
the boundaries of the geodesic circles Sε

α and the boundary
of M .

. – p.25/37



Assuming that V has all zeros in M \ ∂M , it follows that V

has no zeros on Mε, and therefore we can normalize it
obtainig the following mapping:

X =
V

F (V )
: Mε → SM, x 7→ V (x)

F (V (x))
.

Using this X, we can lift Mε to SM obtainig in this way the

2-dimensional submanifold X(Mε) of SM .
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Prop. Let (M,F ) be a compact oriented Landsberg surface
with the smooth boundary ∂M . Let

N : ∂M → SM

be the inward pointing Finslerian unit normal on ∂M .
Then, we have

∫

M
K
√

gdx1 ∧ dx2 +

∫

N(∂M)
ω 2

1 = L · X (M),

where L is the Riemannian length of the indicatrix of (M,F ),
K and g are the Gauss curvature and the determinant of
the fundamental tensor gij of F , respectively, ω 2

1 the Chern
connection form, and X (M) the Euler characteristic of M .
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Prop. On the Finsler manifold (M,F ) with smooth boundary
∂M = γ : [a, b] → M , we have

∫

N(∂M)
ω 2

1 =

∫

γ

k
(N)
N (t)

σ(t)
dt,

where N is the inward pointing normal on γ, ω 2
1 the Chern

connection form and σ2 = gN (T, T ).
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Theorem (Gauss-Bonnet Theorem for Landsberg surfaces)
Let (M,F ) be a compact, connected Landsberg surface
with unit velocity smooth boundary. Then

1

L

∫

M
K
√

gdx1 ∧ dx2 +
1

L

∫

γ

k
(N)
N (t)

σ(t)
dt = X (M),

where L is the Riemannian length of the indicatrix of (M,F ),
k

(N)
N the signed curvature of γ over N , the scalar

σ =
√

gN (T, T ), and X (M) the Euler characteristic of M .
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N–extremal curves

For a natural parametrized smooth curve γ : [0, 1] → M on a
Landsberg surface (M,F ) with velocity field T (t) we can
construct the normal vector field N = N(t) s.t.

gN (N,N) = 1, gN (N,T ) = 0, gN (T, T ) = σ2(t).

By derivation of those along γ we obtain

gN (D
(N)
T N,N) = 0,

gN (D
(N)
T N,T ) + gN (N,D

(N)
T T ) = 0,

gN (D
(N)
T T, T ) =

1

2

dσ2(t)

dt
.
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For a Riemannian surface the following are equivalent
(1) the geodesic curvature kN (t) = g(DT T,N) vanishes
(2) the velocity vector field T is parallel transported along γ

(3) the normal vector field N is parallel transported along γ

(4) γ is a geodesic.

For a Landsberg surface the following are equivalent
(1) the geodesic curvature k

(T )
N (t) vanishes

(2) the normal vector field N is parallel transported along γ,
i.e. D

(N)
T N = 0.

These curves will be called N–extremals of the surface M .
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If γ is an N -extremal, then we have

gN (N,D
(N)
T T ) = 0,

gN (D
(N)
T T, T ) =

1

2

dσ2(t)

dt
.

It follows that the N -extremals are characterized by

D
(N)
T N = 0

D
(N)
T T =

d

dt
[log σ(t)]T.
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Let us construct the N -lift γ̂ of an N -extremal γ to T̃M as
above, i.e. ˆγ(t) = (γ(t), N(t)). The local equations of γ̂ are

dxi

dt
= T i(t)(19)

dN i

dt
= −T j(t)NkΓi

jk(x,N),(20)

where T is given by gN (N,T ) = 0.

For the initial conditions (xi
0, N

i
0) the above equations have

unique solution. Here, for (xi
0, N

i
0) the initial velocity T i

0 is
given by gN0

(N0, T0) = 0.
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The N -extremals are the integral lines of the vector field

T̂ = T i(t)
δ

δxi |(x,N)
∈ TN (TxM)

that plays the role of the spray for N -extremals.

In the Riemannian case, the N -extremals coincide to the
Riemannian geodesics.

In the Finslerian case, the N -extremals do not coincide with
the Finslerian geodesics, nor with the geodesics of the
Riemannian metric gN .
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Remark 1. For a Lansberg surface whose smooth boundary
∂M = γ is a N -extremal, the Gauss-Bonnet formula reads

1

L

∫

N
K
√

gdx1 ∧ dx2 = X (M),

where L is the Riemanian length of the indicatrix and X (M)
the Euler characteristic of M .
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Remark 2. Consider the case of the Minkowski plane (R2, F ),
and a domain D ⊂ R2 bounded by the natural parametrized
indicatrix curve S = γ. In this case, the Gauss-Bonnet
formula implies:

∫

S

k
(N)
N (t)

σ(t)
dt = L,

where k
(N)
N is the geodesic curvature of the indicatrix, and L

the Riemannian length of the indicatrix.
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